THE INVESTIGATION OF NONSTATIONARY
HEAT TRANSFER BY ELECTRIC MODELS
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A device is discussed which can extend the potentialities of existing models and permit the
solution of problems in nonstationary heat conduction with time-dependent boundary condi-
tions of the third kind,

At the present time electrical models, RC-networks, which belong to the class of continuous analog
mathematical machines (AMM), are widely used to solve problems in nonstationary heat conduction, In
spite of the known advantages of RC-networks over other modelg, the solution of nonstationary heat conduc-
tion problems with time-dependent boundary conditions of the third kind on them is difficult, This is be-
cause there are no devices for the continuous simulation of one component of the boundary conditions — the
time-dependent heat-transfer coefficients a = £(r), the electrical analog of which is the conductance (1/R,).

Such problems can be solved on existing AMM, for example, on an USM-1 [1] if we use a block which
reproduces the step-approximation function aog = ¢ (1) [2] to simulate the function & ={(r), It was proved
in [3] that it is permissible to replace continuous functions of the form @ = f(r) by step functions when « is
constant in a bounded number of intervals. It should be noted that the possible wide use of such a block is
restricted by the complexity of its circuit and also by the labor in calculating its parameters and the dura-
tion of the program for each given function o = f{r), .

Below we discuss a device which can be used with RC-networks to solve boundary-value problems of
the third kind when the boundary conditions vary continuously with time, which until recently has been im-
possible, The operation of the proposed device is based on a new method of specifying the boundary condi-
tions of the third kind which makes it possible to eliminate from the model the boundary resistor R, and
to simulate the heat-transfer coefficients by a voltage U, which is linear in time with constant &, We know
that the construction of voltages varying arbitrarily with the time is not difficult and to this end, in existing
AMM various function generators (FG) are used,

At the present time to implement in a model the boundary condition of the third kind
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Fig.1l. Block diagram of a device for specify variable
boundary conditions of the third kind (DSVBC).

between the potential Ume, corresponding to Tyye, and the potential of a boundary point Ug, corresponding to
Tg, a resistor R, is included. A current Iy, defined by the equation

1
11‘ = K'ra (Tme_' Ts) = _]'é"— (Umé“ Us)’ (2)
flows through R, where
US = 1<th; US == Kth; Ra =}-<Ri .
a

The resistor R, in (2) can be eliminated if we use the voltage U, to simulate the coefficients &. Then
the expression for the current I takes the form
1

IT = KaKI—{- Ua (Ume_ Us): (3)

where

U, =Ko =KKg—— .
R,

Thus we have shown that a boundary condition of the third kind can be implemented by a current at a
boundary point of the model proportional to the product of the voltage U, and the difference between the
voltages Upeand Uy, To form the current It the electrical model must have electronic blocks to implement
the mathematical operations of multiplication and addition and also the operation of transforming voltage
into current, It should, however, be noted that even if these blocks are present, Iy cannot be formed by the
known methods in use at the present time in analog models, since one component (Ug) is unknown and has
to be determined during the solution,

Figure 1 shows the block diagram of the proposed device to specify variable boundary conditions of
the third kind (DSVBC), the essential distinction of which is that it is constructed on electrical simulation
principles, The DSVBC contains two function generators FG; and FG,, an adder £, a multiplier MULT,
and a controllable current stabilizer CCS. '

The purpose of the function generators is to form the voltages Uy and U, which vary with time ac-
cording to known rules.

The multiplication block is designed to multiply two continuously varying voltages, one of which (Up,)
is input from FG; and the other (Ur=Ume — Ug) is input from the adder. The output of MULT is

Um = KmUaUT = .KmUa (Ume_ Us‘)’ (4)
which is the input of CCS, '

The CCS is designed to transform Ujp into the current proportional to it
1y = KUy= KUy (U~ Uy) (5)

and to provide this current at a boundary point of the model.

The current L formed by the device is proportional both to the known variables « and Ty, and to the
unknown variable Ty, To obtain the unknown voltage Ug inthe DSVBC we use negative feedback, i.e., one
of the inputs of the adder is connected to the boundary point of the model, It can be shown that, due to the
feedback loop, the DSVBC is stable and the potential of the boundary point is Ug provided that

KKK Kz = 1. (6)
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The calculation of the DSVBC parameters can be reduced to the determination of the transformation
coefficients K, Ky, K;, which, with Kg, satisfy Eq. (6).

The coefficient K is known since it is defined in the calculation of the RC-network parameters.

The coefficient K, must be chosen from the condition that the range of variation of U, must be maxi-
mal for given range of o (K = O‘max/ Omin). Then for .. we must take 100% of the output voltage from
FGi. Thus

1100%

Cmax

Ko = (7

and U, varies from Uamin =100%/K to Uo‘max =100%. If we construct the functiona = f(7) for the relative
variable & = a/a, = £(r), o varies from 1 to 1/K. Then Ko =100%.

The coefficient Ky for the multiplication block may be constant or variable., From the point of view
of tuning the greatest number of channels it is expedient to choose Ky; to be constant, and for USM-1, for
example, equal to 0,05,

The coefficient K; of the CCS is computed from the following equation when K, K, , and Kp; areknown:
L
KrK Ky

We see that K; is variable; it changes with the conditions of the problem, Hence, the circuit of the
CCS must allow K; to vary smoothly within wide limits.

K;= (8)

When the feedback link is disconnected from the output of the CCS, a current Iyye =K70T 0, known
from the boundary conditions, must flow into the boundary point of the model, It is convenient to use this
current to correct the coefficient K; of the CCS and to check that the parameters of the DSVBC have been
calculated correctly, The coefficient Kt is determined from the equation

- K

T M 9)
K Kx (

The essential advantage of the device discussed above is that the variables & and Tmye are simulated
by the voltages U, and Upe, each of which is formed independently of the other by its FG and is an indepen-
dent factor in the multiplication block, Hence in solving a problem with the model we can vary o = £(r) and
Tme =f(7) arbitrarily and so we can study the effect of a and Tjy, on nonstationary temperature fields and
also solve inverse heat conduction problems and the problem of the optimal solution, which means that the
AMM is more universal,

As a test the DSVBC was constructed from standard USM-1 blocks, The FG from that machine, GU-2
channels and also multiplication blocks using GU-1 channel amplifiers in a circuit forming one quarter of
the multiplier with thyrite square-law function generators, were included, By using GU-1 channels in the
circuit it was possible to avoid the need to add special multipication blocks to complement the USM-1, By
using the device in conjunction with the USM-1, the continuous solution was obtained for the first time for
a number of problems when the heat-transfer coefficients varied continuously with time,

Ag an example, Table 1 gives the results of solving problems discussed in (4) by Vanichev's numerical
method, Vidin's analytic method, and by electrical simulation using the USM-~1 and the DSVBC, The dif-
ference between the solutions does not exceed 1,5%, which confirms that it is possible to use the DSVBC in
practice,

In conclusion we note that if & = const, the DSVBC ig gignificantly simplified. It consists only of an
FG forming the voltage Uy, and a CCS with two added inputs, one of which is connected to the FG and the
other is connected to the boundary point of the model, and so is connected to the output of the CCS,

NOTATION
Tme is the temperature of the medium, deg;
Tg is the surface temperature of body, deg;
o is the heat-transfer coefficient, W/m?.deg;
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is the coefficient of thermal conductivity, W/m -deg;

is the boundary resistor, ohm;

is the current, amp;

is the potential, volts;

is the transition coefficient from temperature to potential, V/deg;

is the transition coefficient from thermal to electrical resistances, ohm . W/m? . deg;
is the transition coefficient from heat flow to electrical current, m2/V;

is the transition coefficient from « to Uy, m?.deg/A;

is the transformation coefficient for the multiplication block, 1/V;

is the transformation coefficient for the CCS, A/V.
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